← 返回

茆诗松统计学核心速通讲义 - 6.4最小方差无偏估计 - 问题5

版权声明:本讲义为Knowecon制作,受版权保护。未经授权,禁止复制、传播。仅供Knowecon小小班学员学习使用。

问题 设总体$p(x;\theta)$的费希尔信息量存在,若二阶导数$\frac{\partial^2}{\partial\theta^2}p(x;\theta)$对一切的$\theta\in\Theta$存在,证明费希尔信息量
$$ I(\theta)=-E\left(\frac{\partial^2}{\partial\theta^2}\ln p(x;\theta)\right) $$
## 答案 证明: 设 $S_\theta = \dfrac{\partial \ln p(x; \theta)}{\partial \theta}$,则有:
$$ E[S_\theta] = \int_{-\infty}^{+\infty} S_\theta \, p(x; \theta) \, \mathrm{d}x. $$
计算 $E[S_\theta]$: $$ \begin{aligned} E[S_\theta] &= \int_{-\infty}^{+\infty} \frac{\partial \ln p(x; \theta)}{\partial \theta} , p(x; \theta) , \mathrm{d}x \ &= \int_{-\infty}^{+\infty} \frac{1}{p(x; \theta)} \frac{\partial p(x; \theta)}{\partial \theta} , p(x; \theta) , \mathrm{d}x \ &= \int_{-\infty}^{+\infty} \frac{\partial p(x; \theta)}{\partial \theta} , \mathrm{d}x \ &= \frac{\partial}{\partial \theta} \int_{-\infty}^{+\infty} p(x; \theta)

Content truncated. Please enter passkey to view full content.

Knowecon Chat

$